புதிய பதிவுகள்
» தமிழ் சரித்திர நாவல்கள் — மின்னூல்கள்
by prajai Yesterday at 11:06 pm
» ஈகரை வருகை பதிவேடு
by ayyasamy ram Yesterday at 9:08 pm
» பல்சுவை தகவல் - படித்ததில் பிடித்தது-9
by ayyasamy ram Yesterday at 5:53 pm
» பல்சுவை தகவல் - படித்ததில் பிடித்தது-9
by ayyasamy ram Yesterday at 5:35 pm
» கவிதைக் கனவு
by ayyasamy ram Yesterday at 5:32 pm
» தமிழ் எனும் கரும்பு
by ayyasamy ram Yesterday at 5:31 pm
» காகிதப் பூ மணக்குமா?
by ayyasamy ram Yesterday at 5:28 pm
» பேராற்றல் கொண்டெழு
by ayyasamy ram Yesterday at 5:26 pm
» நாளைய விடியலின் நம்பிக்கை விதைகள்
by ayyasamy ram Yesterday at 5:25 pm
» தோற்குமே வானெல்லை தோயும் பசும்பொன்னும்!
by ayyasamy ram Yesterday at 5:24 pm
» பயணம் – கவிதை
by ayyasamy ram Yesterday at 5:22 pm
» அமரன் கெட்டப்பில் மனைவிக்கு பிறந்தநாள் வாழ்த்து தெரிவித்த சிவகார்த்திகேயன்
by ayyasamy ram Yesterday at 4:13 pm
» இன்றைய செய்திகள்- நவம்பர் 16
by ayyasamy ram Yesterday at 4:01 pm
» ஆன்மிகக் கதைகள் – படகோட்டியும் பட்டாபிஷேகமும்
by ayyasamy ram Yesterday at 3:37 pm
» சர்வ ஏகாதசி
by ayyasamy ram Yesterday at 3:35 pm
» பரமஹம்ஸர் என்று யாரை சொல்கிறோம்?
by ayyasamy ram Yesterday at 3:33 pm
» இதன் பொருள் என்ன?
by ayyasamy ram Yesterday at 3:31 pm
» மகாலட்சுமி தேவி தாயாரின் துதிப்பாடல்
by ayyasamy ram Yesterday at 3:30 pm
» வீட்டில் ஏற்றும் விளக்கை அடிக்கடி இடமாற்றம் செய்யக்கூடாது!
by ayyasamy ram Yesterday at 3:27 pm
» உடலும் மனமும் - புத்தர்
by ayyasamy ram Yesterday at 3:23 pm
» ஸ்ரீரமண சிந்தனை
by ayyasamy ram Yesterday at 3:22 pm
» அருவம் யாருடையதோ உருவம் அவருடையதே!
by ayyasamy ram Yesterday at 3:19 pm
» கார்த்திகை மாத சிறப்புகள்
by ayyasamy ram Yesterday at 3:16 pm
» மஹாதேவாஷ்டமி
by ayyasamy ram Yesterday at 3:14 pm
» திருப்பதியில் வனபோஜனம், கார்த்திகை தீப உற்சவம்
by ayyasamy ram Yesterday at 3:10 pm
» மீண்டும் பிறவாத நிலை அடைய…
by ayyasamy ram Yesterday at 3:09 pm
» விரதம் இருந்து துளசி பூஜை செய்வது எப்படி?
by ayyasamy ram Yesterday at 3:07 pm
» ‘பூந்தேனில் கலந்து…’ தனது ஹிட் பாடலை மறந்த கே.வி மகாதேவன்:
by ayyasamy ram Yesterday at 2:58 pm
» மனசைப் பொறுத்தது அழகு
by ayyasamy ram Yesterday at 2:56 pm
» பிளாக் – திரைப்பட விமர்சனம்
by ayyasamy ram Yesterday at 2:55 pm
» `வெண்ணிலாவாக நடிக்கிறேன்..!’ டோலிவுட்டில் களமிறங்கும் அதிதி ஷங்கர்!
by ayyasamy ram Yesterday at 2:53 pm
» விரைவில் வெளியாகும் ராஜாகிளி
by ayyasamy ram Yesterday at 2:41 pm
» கடலை பக்கோடா - கார வகைகள் டிப்ஸ்
by ayyasamy ram Yesterday at 11:38 am
» புத்தர் போதனைகள்
by ayyasamy ram Yesterday at 11:23 am
» நாவல்கள் வேண்டும்
by Pampu Yesterday at 8:14 am
» என் அத்தை மகள் அஞ்சலையே
by ayyasamy ram Yesterday at 6:37 am
» காரியக்காரி
by ayyasamy ram Yesterday at 6:35 am
» காதல்- புதுக்கவிதை
by ayyasamy ram Yesterday at 6:34 am
» மதி மயக்கம்
by ayyasamy ram Yesterday at 6:32 am
» சம்பளக்காரர்
by ayyasamy ram Yesterday at 6:31 am
» காலத்தின் வாசல் காதலால் ஆனது
by ayyasamy ram Yesterday at 6:29 am
» வீட்ல விசேஷங்க. ஜாலியான கொண்டாட்டந்தானுங்க.
by heezulia Fri Nov 15, 2024 9:20 pm
» கருத்துப்படம் 15/11/2024
by mohamed nizamudeen Fri Nov 15, 2024 8:36 pm
» தமிழ் படங்களின் டைட்டில் பாட்டுக்கள்
by heezulia Fri Nov 15, 2024 8:01 pm
» தமிழ் சினிமால ஜாலியா பாட்டு பாடிட்டே பயணம் செஞ்ச பாட்டுக்கள்
by heezulia Fri Nov 15, 2024 7:45 pm
» ஒரு படத்தில ரெண்டு தடவ வந்த ஒரே பாட்டு
by heezulia Fri Nov 15, 2024 7:25 pm
» நடிகை, நடிகர்கள் மாறு வேஷத்துல நடிச்ச பாட்டுக்கள்
by heezulia Fri Nov 15, 2024 7:14 pm
» சினிமா கலைஞர்கள் பாடாத பாட்டுக்கள்
by heezulia Fri Nov 15, 2024 6:53 pm
» கொழந்தைங்க, சின்ன புள்ளைங்க நடிச்ச பாட்டுக்கள்
by heezulia Fri Nov 15, 2024 4:02 pm
» சினிமா கலைஞர்கள் பாடிய பாட்டு
by heezulia Fri Nov 15, 2024 3:54 pm
by prajai Yesterday at 11:06 pm
» ஈகரை வருகை பதிவேடு
by ayyasamy ram Yesterday at 9:08 pm
» பல்சுவை தகவல் - படித்ததில் பிடித்தது-9
by ayyasamy ram Yesterday at 5:53 pm
» பல்சுவை தகவல் - படித்ததில் பிடித்தது-9
by ayyasamy ram Yesterday at 5:35 pm
» கவிதைக் கனவு
by ayyasamy ram Yesterday at 5:32 pm
» தமிழ் எனும் கரும்பு
by ayyasamy ram Yesterday at 5:31 pm
» காகிதப் பூ மணக்குமா?
by ayyasamy ram Yesterday at 5:28 pm
» பேராற்றல் கொண்டெழு
by ayyasamy ram Yesterday at 5:26 pm
» நாளைய விடியலின் நம்பிக்கை விதைகள்
by ayyasamy ram Yesterday at 5:25 pm
» தோற்குமே வானெல்லை தோயும் பசும்பொன்னும்!
by ayyasamy ram Yesterday at 5:24 pm
» பயணம் – கவிதை
by ayyasamy ram Yesterday at 5:22 pm
» அமரன் கெட்டப்பில் மனைவிக்கு பிறந்தநாள் வாழ்த்து தெரிவித்த சிவகார்த்திகேயன்
by ayyasamy ram Yesterday at 4:13 pm
» இன்றைய செய்திகள்- நவம்பர் 16
by ayyasamy ram Yesterday at 4:01 pm
» ஆன்மிகக் கதைகள் – படகோட்டியும் பட்டாபிஷேகமும்
by ayyasamy ram Yesterday at 3:37 pm
» சர்வ ஏகாதசி
by ayyasamy ram Yesterday at 3:35 pm
» பரமஹம்ஸர் என்று யாரை சொல்கிறோம்?
by ayyasamy ram Yesterday at 3:33 pm
» இதன் பொருள் என்ன?
by ayyasamy ram Yesterday at 3:31 pm
» மகாலட்சுமி தேவி தாயாரின் துதிப்பாடல்
by ayyasamy ram Yesterday at 3:30 pm
» வீட்டில் ஏற்றும் விளக்கை அடிக்கடி இடமாற்றம் செய்யக்கூடாது!
by ayyasamy ram Yesterday at 3:27 pm
» உடலும் மனமும் - புத்தர்
by ayyasamy ram Yesterday at 3:23 pm
» ஸ்ரீரமண சிந்தனை
by ayyasamy ram Yesterday at 3:22 pm
» அருவம் யாருடையதோ உருவம் அவருடையதே!
by ayyasamy ram Yesterday at 3:19 pm
» கார்த்திகை மாத சிறப்புகள்
by ayyasamy ram Yesterday at 3:16 pm
» மஹாதேவாஷ்டமி
by ayyasamy ram Yesterday at 3:14 pm
» திருப்பதியில் வனபோஜனம், கார்த்திகை தீப உற்சவம்
by ayyasamy ram Yesterday at 3:10 pm
» மீண்டும் பிறவாத நிலை அடைய…
by ayyasamy ram Yesterday at 3:09 pm
» விரதம் இருந்து துளசி பூஜை செய்வது எப்படி?
by ayyasamy ram Yesterday at 3:07 pm
» ‘பூந்தேனில் கலந்து…’ தனது ஹிட் பாடலை மறந்த கே.வி மகாதேவன்:
by ayyasamy ram Yesterday at 2:58 pm
» மனசைப் பொறுத்தது அழகு
by ayyasamy ram Yesterday at 2:56 pm
» பிளாக் – திரைப்பட விமர்சனம்
by ayyasamy ram Yesterday at 2:55 pm
» `வெண்ணிலாவாக நடிக்கிறேன்..!’ டோலிவுட்டில் களமிறங்கும் அதிதி ஷங்கர்!
by ayyasamy ram Yesterday at 2:53 pm
» விரைவில் வெளியாகும் ராஜாகிளி
by ayyasamy ram Yesterday at 2:41 pm
» கடலை பக்கோடா - கார வகைகள் டிப்ஸ்
by ayyasamy ram Yesterday at 11:38 am
» புத்தர் போதனைகள்
by ayyasamy ram Yesterday at 11:23 am
» நாவல்கள் வேண்டும்
by Pampu Yesterday at 8:14 am
» என் அத்தை மகள் அஞ்சலையே
by ayyasamy ram Yesterday at 6:37 am
» காரியக்காரி
by ayyasamy ram Yesterday at 6:35 am
» காதல்- புதுக்கவிதை
by ayyasamy ram Yesterday at 6:34 am
» மதி மயக்கம்
by ayyasamy ram Yesterday at 6:32 am
» சம்பளக்காரர்
by ayyasamy ram Yesterday at 6:31 am
» காலத்தின் வாசல் காதலால் ஆனது
by ayyasamy ram Yesterday at 6:29 am
» வீட்ல விசேஷங்க. ஜாலியான கொண்டாட்டந்தானுங்க.
by heezulia Fri Nov 15, 2024 9:20 pm
» கருத்துப்படம் 15/11/2024
by mohamed nizamudeen Fri Nov 15, 2024 8:36 pm
» தமிழ் படங்களின் டைட்டில் பாட்டுக்கள்
by heezulia Fri Nov 15, 2024 8:01 pm
» தமிழ் சினிமால ஜாலியா பாட்டு பாடிட்டே பயணம் செஞ்ச பாட்டுக்கள்
by heezulia Fri Nov 15, 2024 7:45 pm
» ஒரு படத்தில ரெண்டு தடவ வந்த ஒரே பாட்டு
by heezulia Fri Nov 15, 2024 7:25 pm
» நடிகை, நடிகர்கள் மாறு வேஷத்துல நடிச்ச பாட்டுக்கள்
by heezulia Fri Nov 15, 2024 7:14 pm
» சினிமா கலைஞர்கள் பாடாத பாட்டுக்கள்
by heezulia Fri Nov 15, 2024 6:53 pm
» கொழந்தைங்க, சின்ன புள்ளைங்க நடிச்ச பாட்டுக்கள்
by heezulia Fri Nov 15, 2024 4:02 pm
» சினிமா கலைஞர்கள் பாடிய பாட்டு
by heezulia Fri Nov 15, 2024 3:54 pm
இந்த வார அதிக பதிவர்கள்
ayyasamy ram | ||||
heezulia | ||||
Dr.S.Soundarapandian | ||||
mohamed nizamudeen | ||||
E KUMARAN | ||||
Anthony raj | ||||
Pampu | ||||
ஆனந்திபழனியப்பன் | ||||
prajai |
இந்த மாத அதிக பதிவர்கள்
ayyasamy ram | ||||
heezulia | ||||
mohamed nizamudeen | ||||
Dr.S.Soundarapandian | ||||
prajai | ||||
E KUMARAN | ||||
ஜாஹீதாபானு | ||||
Balaurushya | ||||
Anthony raj | ||||
Barushree |
நிகழ்நிலை நிர்வாகிகள்
இந்திய கணிதவியல் வரலாறு
Page 1 of 1 •
உலகில் எந்த ஒரு தனிப்பட்ட நாட்டின் பங்களிப்பைவிடவும் கணிதவியலில் இந்தியாவின் பங்களிப்பு மிக முக்கியத்துவம் வாய்ந்தது. தவிர்க்க இயலாத ஒன்று. நம் நாட்டின் கணிதவியல் கண்டுபிடிப்புகள் மற்ற நாட்டு அறிஞர்களின் கண்டுபிடிப்புகளிலிருந்து தனித்துவமானது சார்பற்றது. பண்டைய காலங்களில் கணிதம் நடைமுறை பயன்பாட்டுக்கு உபயோகப்படுத்தும் முறையாகவே இருந்தது. கணித முறைகள் மற்றும் அளவீட்டு முறைகள் கட்டடக்கலை மற்றும் சிற்பக்கலை சார்ந்த தொழில்களில் ஒவ்வொரு பாகங்களின் அளவுகளை சரியான முறையில் அமைக்கவும், அளவீட்டு சிக்கல்களை தீர்ப்பதற்காகவும் கண்டுபிடிக்கப்பட்ட ஒரு அற்புத அறிவியல் இது. பண்டைய காலக் கட்டத்தில் இருந்து வந்துள்ளதை பல்வேறு சான்றுகளின் மூலமாக அறியமுடிகிறது.
இந்திய கணிதவியல் காலக்கட்டத்தை சிந்து சமவெளி நாகரீகம் தொடங்கி, வேதகாலம் (பௌதாயன, சத்யானா, பாணினி)இலக்கிய காலம் (ஆரியப்பட்டா 1 , ஆரியப்பட்டா 11, பாஸ்கரா 1, பாஸ்கரா 11, பிரம்மகுப்தர், மகாவீரா, பாவ்லுரி மல்லான, வராகமித்திரர்); மத்திய காலம் (நாராயண பண்டிட், சங்கம கிராம மாதவன், நீலகண்ட சோமயாஜி, ஜேஸ்ட தேவன்); தற்காலம் (சீனிவாச ராமானுஜம், ஹரீஸ்-சந்திரா, எஸ்.என்.போஸ், சுப்ரமணியன் சந்திரசேகர், பிரளந்த சந்திர மெக்னோவீஸ், ஜயந்நார்லிகர், சீனிவாச வரதன், தாணு பத்மநாபன்) என்று ஐந்து காலக்கட்டங்களாக பிரித்து அறியலாம். இந்த ஐந்து காலக்கட்டத்திலும் ஆங்காங்கே சில மாறுதல்களும், பார்ப்பனிய ஆதிக்க திணிப்புகளும் இந்தியக் கணிதவியலில் நடந்தேறின. இவற்றின் ஒட்டு மொத்த தொகுப்பு தான் இன்றைய இந்திய கணிதவியல் என்பது மறுக்க முடியாத உண்மை.
பண்டையக் கால கணிதவியல் (கி.மு.3000 - கி.மு.600)
சிந்துசமவெளி நாகரீக அகழ்வாராய்ச்சிகள் நிகழ்த்தப்படாமலிருந்தால் இந்தியச் சரித்திரம் வேதகாலத்திலிருந்துதான் தொடங்கியது என்னும் தவறான வரலாறாக மாறியிருக்கும். இந்திய வரலாறே ஆரியமயமாக்கப்பட்டிருக்கும். சிந்து சமவெளி நாகரீகத்தில் வழக்கத்திலிருந்த ஒரே மாதிரியான அளவீடுகளும், எடை முறைகளும் இந்திய கணிதவியலின் முதல் நிலை ஆகும். இதனை கணக்கில் கொள்ளாமல் கணிதவியல் சரித்திரம் எழுதுவது, நுனிப்புல் மேய்வது போலவே அமையும்.
கி.மு.1500-க்கும் முந்தைய காலகட்டங்களிலேயே தந்தத்திலான அளவுகோல்களை சிந்துசமவெளி நாகரீக திராவிட மக்கள் பயன்படுத்தி வந்திருக்கின்றனர். லோதல் என்னுமிடத்தில் கண்டுபிடிக்கப்பட்ட அளவுகோல் 2 மில்லி மீட்டருக்கும் குறைவான அளவீடு ஒரு அங்குலத்தில் 1/16 பங்கு இடை வெளியில் பிரிக்கப்பட்டு, அளவீடாகப் பயன் படுத்தப்பட்டு வந்தது. மொகஞ்சதாரோவில் 1.32 அங்குலம் (33.5 மி.மீ) இடைவெளியில் அளவுகள் குறிக்கப் பட்டிருந்தது. மேலும் ஒவ்வொரு 1.32 பிரிவும் 0.005 அங்குல இடைவெளியில் மிக நுணுக்கமாக, பிழையின்றி பிரிக்கப்பட்டுள்ளது. இதன் மூலம் தசம முறை அளவீடுகள் இங்கிருந்துதான் ஆரம்பமானது என தெளிவாக விளங்கும். அந்தக் காலகட்டத்தில் உபயோகிக்கப் பட்ட செங்கற்களின் அளவு 4:2:1 என்ற விகிதாச்சார முறையில் அமைந்திருந்தது. எல்லா அளவுகளிலும் ஒரு ஒழுங்குமுறை பின்பற்றப்பட்டிருந்தது. இந்தச் சான்றுகள் சிந்துசமவெளி நாகரீக கால கட்டத்திலேயே கணித அளவீடு படிநிலையை அடைந்திருந்ததை தெள்ளத்தெளிவாக பதிவு செய்கிறது. இதைப் பற்றிய ஆய்வு இன்னும் நடந்து வருகிறது.
வேதகால கணித வளர்ச்சி
வேதகால கணிதவியல் வளர்ச்சிக்குரிய சான்றுகள் மதம் சார்ந்த நூல்களிலேயே காணப் படுகின்றன. பத்தின் அடுக்கு 12 (1012), என நூல்களில் இடம் பெற்றிருந்தன. அஸ்வபேத யாகத்தின் இறுதியில் செய்யப்படும் அன்ன ஹோமத்தில் உச்சரிக்கப்படும் மந்திரத்தில் பத்தின் அடுக்குகள் நூறு முதல் டிரில்லியன் வரையிலான எண்கள் இடம் பெற்றிருக்கிறது. அவை சத (நூறு 102), டிரில்லியன் (ஆயிரம், 103), ஆயுத (பத்தாயிரம், 102) முதல் பரார்த சங்கர (1012) வரை எண்களாகும். யாக அக்னி குண்டம் வளர்த்துவதற்கான சிறிய கட்டிடம் போன்ற அமைப்பை கட்டுவதற்கு சில முறைகளை சுலப சூத்ரா என்ற வேதகால சமஸ்கிருத நூல் கூறுகிறது சமன்பாடு களை உபயோகப்படுத்தாமல் பிதாகரஸ் தேற்றம் பண்டைய முறையில் வார்த்தைகளால் விவரிக்கப் பட்டிருந்தது.
பௌதாயனா (கி.மு.800) பௌதயன சுபல சூத்திரத்தை இயற்றியவர் இந்த காலகட்டத்தை சேர்ந்தவர். ஒரு செவ்வகத்தின் மூலைவிட்டத்தின் வழியே இழுக்கப்படும் கயிறானது அதன் செங்குத்து மற்றும் கிடக்கை பக்கங்கள் இணைந்து உருவாக்கும் பரப்பிற்கு சமம் என்ற பொதுவான கருத்தை பௌதாயனாவின் சுலப சூத்திரம் கூறுகிறது. அதனை விளக்குவதற்கு, மிகச் சரியான முக்கோண சதுரத்தின் பக்கங்கள் (3,4,5), (5,12,13), (8,15,17) மிக துல்லியமாக கொடுக்கப்பட்டுள்ளது. பௌதாயனா இரண்டின் வர்க்கமூலம் கண்டு பிடிக்க, ஒரு சூத்திரத்தை உருவாக்கி, இரண்டின் வர்க்க மூலத்தை ஐந்து தசம இடமதிப்பு வரை துல்லியமாக கணித்தார்.
சமணர்கள் கால கணிதவியல் (கி.மு.600 - கி.பி.500)
சமணர்கள், மதங்களிலும், மத சடங்குகளிலும் வழிபாட்டு மந்திரங்களிலும் பின்னிப்பிணைந் திருந்த கணிதவியலை, அவற்றிலிருந்து விடுதலைப் பெற பெரும் பங்காற்றியவர்கள். சமணக் கணிதவியலர்கள் முதன் முதலில் "சூன்யா' என்ற சுழி அல்லது பூஜ்ஜியத்தை குறிப்பிடும் பதத்தை முதன் முதலில் உபயோகப் படுத்தியவர்களாவர். சமணர் பிரபஞ்சவியல் கருத்துகள் கணிதவியலில் "முடிவிலி' என்ற புதிய ஒரு சிந்தனைக்கு வழி வகுத்தது. ஒரு முடிவுறு கணத்திற்கு அது எத்தனை உறுப்புகளை கொண்டிருக்கிறது என்பதுதான் அடிப்படை. ஆனால் முடிவுறா கணத்திற்கு அதன் உறுப்புகளை அளவிட முடியாது. முடிவுறா கணத்தினை குறிப்பிட வேண்டுமானால் ஒரு சிக்கலான குறியீடு தேவைப்படுகிறது. ஐரோப்பாவில் இந்த முடிவிலி பற்றிய சிந்தனை வருவதற்கு 19-ஆம் நூற்றாண்டு வரை காத்திருக்க வேண்டியிருந்தது, எண்ணியல் கோட்பாடு, வடிவியல், பின்னங்கள் மற்றும் சேர்வு ஆகியவற்றை கண்டுபிடித்ததில் சமணர்களின் பங்கு மிக முக்கியமானது.
மேலும் முடிவிலியை கண்டறிந்தது மட்டு மின்றி, முடிவிலியை ஐந்து வெவ்வேறு வகைகளாக பிரித்துள்ளனர். ஒரு திசை முடிவிலி, இருதிசை முடிவிலி, ஒரு பரப்பில் முடிவிலி, எல்லாதிசையிலும் முடிவிலி, நிலையான முடிவிலி ஆகியவையே ஐந்து முடிவிலிகள்.
கணிதவியலின் கலை இலக்கிய காலகட்டம் (கி.மு 400 - கி.மு.1200)
வேதகாலத்திற்கு முந்தைய காலக்கட்டம் கணிதவியலின் மிக முக்கியமானதோர் காலக்கட்டம் எனலாம். இக்காலகட்டத்தில் தோன்றிய ஆரிய பட்டர், பிரம்ம குப்தர், பாஸ்கரா, வராகமித்திரர், மகாவீரா போன்றவர்கள் கணிதவியல் பல்வேறு கிளைகளாக பிரிவதற்கு தெளிவான அமைப்பை உருவாக்கியவர்கள் எனலாம். வேதகால கணித வியலைப் போன்று அல்லாமல் கணித அறிவியல், ஜோதிட கணிதம், வானியல் கணிதம் என மூன்று பிரிவுகளாக பிரிவுற்று வளர்ந்தன. இக்கால கட்டத்தில்தான் கிரேக்கர்களிடமிருந்து ஜோதிடம் இந்தியாவில் நுழைந்ததாகவும், வானவியல் அறிவு நம்மிடமிருந்து கிரேக்கர்களுக்கு சென்றதெனவும் விவேகானந்தர் எடுத்துரைக்கிறார். கி.மு.120-க்கும் பிந்தைய காலகட்டத்தில் யவனேஸ்வராவினால் எழுதப் பட்ட புகழ்மிக்க ஜோதிட நூல் இதனை மறைமுகமாக உணர்த்துகிறது.
கணிதவியலின் சூனியம் (அல்லது) சூழி மனித சமுதாயத்திற்கே பழங்கால இந்தியா அளித்த பரிசு. இடமதிப்புத் திட்டத்தின் பயன்பாட்டிற்கு சுழி என்ற கருத்தே முழு முதற்காரணம். எல்லா எண் களையும் பத்தே குறியீடுகளைக்கொண்டு குறிப்பிடமுடியும் என்ற கருத்து இடமதிப்புத் திட்டம் ஆகும். இன்றைய கணினி முறைகளில் இன்றியமையாத அடித்தளமாக இருக்கும் எண்முறை (Binary) திட்டம் ஏற்பட அடிப்படை இடமதிப்புத் திட்டம் தான் இது.
இக்காலகட்டத்தில் தோன்றிய ஆரியபட்டர் வானவியலில் மிகுந்த ஆர்வமுடையவர். தன்னுடைய "ஆரியபட்டியம்' எனும் நூலில் நேரியல் சமன்பாடுகளுக்கு (Lixar equations) தீர்வுகாண தன்னுடைய கண்டுபிடிப்பான, குட்டகா என்னும் முறையை விவரித்துள்ளார். அதோடு அல்லாமல் ஆரியபட்டா சைன் பட்டியல் எனும் கோண அளவுகளின் சைன் மதிப்புகளை நான்கு தசம இடமதிப்பிற்கு சரியாக, 0 டிகிரி முதல் 90 டிகிரி வரையிலான கோணங்களுக்கு மதிப்பைக் கண்டறிந்தவர் இவரே. இவருடைய நேரியல் சமன்பாடு ax+by+c ஆகும். இதில் a,b,c என்பன முழு எண்கள்.
பிரம்மகுப்தர் முற்றொருமைகளை கண்டுபிடித்தவர். இயற்கணிதத்தில் முற்றொருமை என்பது இரண்டு வர்க்கங்களின் கூட்டுத் தொகைகள் இரண்டின் பெருக்குதொகையும் இரண்டு வர்க்கங்களின் கூட்டுத்தொகையாக இருக்கும் என்பதுதான்.
இது பிரம்ம குப்தரால் "பிரம்மஸ் புடசித்தாந்தம் என்ற நூலில் எழுதப்பட்டது. சிக்கலெண்களின் தொடர்பு, வட்ட நாற்கரத்தின் பரப்பு காணும் சூத்திரம்,
ஆகியவை பிரம்மகுப்தர் கணிதவியலுக்கு அளித்த மிகப்பெரிய பங்களிப்பு எனலாம். இக்காலகட்டத்தில் வானவியல் கணக்கீடுகள் வேகமாக வளர்ச்சியடைய தொடங்கியிருந்ததை, வானில் நடைபெறும் நிகழ்வுகளான சூரியகிரகணம் மற்றும் சந்திர கிரகணம் ஆகியவற்றின் தோற்றங் கள் குறித்த கணக்கிட ஸ்ரீபதி மிஸ்வராவால் எழுதப்பட்ட "திகோடி தகர்னா' எனும் நூலில் காணலாம். இக்காலகட்டங்களில் மகாவீரா எதிர்மாறு எண்களில் வர்க்கமூலம் இல்லை எனவும், உயர்ந்த அடுக்குள்ள பல்லுறுப்புகளையும் கொண்ட கணக்குகளுக்கு தீர்வுகளை கண்டறிந்தார்.
இந்திய கணிதவியல் காலக்கட்டத்தை சிந்து சமவெளி நாகரீகம் தொடங்கி, வேதகாலம் (பௌதாயன, சத்யானா, பாணினி)இலக்கிய காலம் (ஆரியப்பட்டா 1 , ஆரியப்பட்டா 11, பாஸ்கரா 1, பாஸ்கரா 11, பிரம்மகுப்தர், மகாவீரா, பாவ்லுரி மல்லான, வராகமித்திரர்); மத்திய காலம் (நாராயண பண்டிட், சங்கம கிராம மாதவன், நீலகண்ட சோமயாஜி, ஜேஸ்ட தேவன்); தற்காலம் (சீனிவாச ராமானுஜம், ஹரீஸ்-சந்திரா, எஸ்.என்.போஸ், சுப்ரமணியன் சந்திரசேகர், பிரளந்த சந்திர மெக்னோவீஸ், ஜயந்நார்லிகர், சீனிவாச வரதன், தாணு பத்மநாபன்) என்று ஐந்து காலக்கட்டங்களாக பிரித்து அறியலாம். இந்த ஐந்து காலக்கட்டத்திலும் ஆங்காங்கே சில மாறுதல்களும், பார்ப்பனிய ஆதிக்க திணிப்புகளும் இந்தியக் கணிதவியலில் நடந்தேறின. இவற்றின் ஒட்டு மொத்த தொகுப்பு தான் இன்றைய இந்திய கணிதவியல் என்பது மறுக்க முடியாத உண்மை.
பண்டையக் கால கணிதவியல் (கி.மு.3000 - கி.மு.600)
சிந்துசமவெளி நாகரீக அகழ்வாராய்ச்சிகள் நிகழ்த்தப்படாமலிருந்தால் இந்தியச் சரித்திரம் வேதகாலத்திலிருந்துதான் தொடங்கியது என்னும் தவறான வரலாறாக மாறியிருக்கும். இந்திய வரலாறே ஆரியமயமாக்கப்பட்டிருக்கும். சிந்து சமவெளி நாகரீகத்தில் வழக்கத்திலிருந்த ஒரே மாதிரியான அளவீடுகளும், எடை முறைகளும் இந்திய கணிதவியலின் முதல் நிலை ஆகும். இதனை கணக்கில் கொள்ளாமல் கணிதவியல் சரித்திரம் எழுதுவது, நுனிப்புல் மேய்வது போலவே அமையும்.
கி.மு.1500-க்கும் முந்தைய காலகட்டங்களிலேயே தந்தத்திலான அளவுகோல்களை சிந்துசமவெளி நாகரீக திராவிட மக்கள் பயன்படுத்தி வந்திருக்கின்றனர். லோதல் என்னுமிடத்தில் கண்டுபிடிக்கப்பட்ட அளவுகோல் 2 மில்லி மீட்டருக்கும் குறைவான அளவீடு ஒரு அங்குலத்தில் 1/16 பங்கு இடை வெளியில் பிரிக்கப்பட்டு, அளவீடாகப் பயன் படுத்தப்பட்டு வந்தது. மொகஞ்சதாரோவில் 1.32 அங்குலம் (33.5 மி.மீ) இடைவெளியில் அளவுகள் குறிக்கப் பட்டிருந்தது. மேலும் ஒவ்வொரு 1.32 பிரிவும் 0.005 அங்குல இடைவெளியில் மிக நுணுக்கமாக, பிழையின்றி பிரிக்கப்பட்டுள்ளது. இதன் மூலம் தசம முறை அளவீடுகள் இங்கிருந்துதான் ஆரம்பமானது என தெளிவாக விளங்கும். அந்தக் காலகட்டத்தில் உபயோகிக்கப் பட்ட செங்கற்களின் அளவு 4:2:1 என்ற விகிதாச்சார முறையில் அமைந்திருந்தது. எல்லா அளவுகளிலும் ஒரு ஒழுங்குமுறை பின்பற்றப்பட்டிருந்தது. இந்தச் சான்றுகள் சிந்துசமவெளி நாகரீக கால கட்டத்திலேயே கணித அளவீடு படிநிலையை அடைந்திருந்ததை தெள்ளத்தெளிவாக பதிவு செய்கிறது. இதைப் பற்றிய ஆய்வு இன்னும் நடந்து வருகிறது.
வேதகால கணித வளர்ச்சி
வேதகால கணிதவியல் வளர்ச்சிக்குரிய சான்றுகள் மதம் சார்ந்த நூல்களிலேயே காணப் படுகின்றன. பத்தின் அடுக்கு 12 (1012), என நூல்களில் இடம் பெற்றிருந்தன. அஸ்வபேத யாகத்தின் இறுதியில் செய்யப்படும் அன்ன ஹோமத்தில் உச்சரிக்கப்படும் மந்திரத்தில் பத்தின் அடுக்குகள் நூறு முதல் டிரில்லியன் வரையிலான எண்கள் இடம் பெற்றிருக்கிறது. அவை சத (நூறு 102), டிரில்லியன் (ஆயிரம், 103), ஆயுத (பத்தாயிரம், 102) முதல் பரார்த சங்கர (1012) வரை எண்களாகும். யாக அக்னி குண்டம் வளர்த்துவதற்கான சிறிய கட்டிடம் போன்ற அமைப்பை கட்டுவதற்கு சில முறைகளை சுலப சூத்ரா என்ற வேதகால சமஸ்கிருத நூல் கூறுகிறது சமன்பாடு களை உபயோகப்படுத்தாமல் பிதாகரஸ் தேற்றம் பண்டைய முறையில் வார்த்தைகளால் விவரிக்கப் பட்டிருந்தது.
பௌதாயனா (கி.மு.800) பௌதயன சுபல சூத்திரத்தை இயற்றியவர் இந்த காலகட்டத்தை சேர்ந்தவர். ஒரு செவ்வகத்தின் மூலைவிட்டத்தின் வழியே இழுக்கப்படும் கயிறானது அதன் செங்குத்து மற்றும் கிடக்கை பக்கங்கள் இணைந்து உருவாக்கும் பரப்பிற்கு சமம் என்ற பொதுவான கருத்தை பௌதாயனாவின் சுலப சூத்திரம் கூறுகிறது. அதனை விளக்குவதற்கு, மிகச் சரியான முக்கோண சதுரத்தின் பக்கங்கள் (3,4,5), (5,12,13), (8,15,17) மிக துல்லியமாக கொடுக்கப்பட்டுள்ளது. பௌதாயனா இரண்டின் வர்க்கமூலம் கண்டு பிடிக்க, ஒரு சூத்திரத்தை உருவாக்கி, இரண்டின் வர்க்க மூலத்தை ஐந்து தசம இடமதிப்பு வரை துல்லியமாக கணித்தார்.
சமணர்கள் கால கணிதவியல் (கி.மு.600 - கி.பி.500)
சமணர்கள், மதங்களிலும், மத சடங்குகளிலும் வழிபாட்டு மந்திரங்களிலும் பின்னிப்பிணைந் திருந்த கணிதவியலை, அவற்றிலிருந்து விடுதலைப் பெற பெரும் பங்காற்றியவர்கள். சமணக் கணிதவியலர்கள் முதன் முதலில் "சூன்யா' என்ற சுழி அல்லது பூஜ்ஜியத்தை குறிப்பிடும் பதத்தை முதன் முதலில் உபயோகப் படுத்தியவர்களாவர். சமணர் பிரபஞ்சவியல் கருத்துகள் கணிதவியலில் "முடிவிலி' என்ற புதிய ஒரு சிந்தனைக்கு வழி வகுத்தது. ஒரு முடிவுறு கணத்திற்கு அது எத்தனை உறுப்புகளை கொண்டிருக்கிறது என்பதுதான் அடிப்படை. ஆனால் முடிவுறா கணத்திற்கு அதன் உறுப்புகளை அளவிட முடியாது. முடிவுறா கணத்தினை குறிப்பிட வேண்டுமானால் ஒரு சிக்கலான குறியீடு தேவைப்படுகிறது. ஐரோப்பாவில் இந்த முடிவிலி பற்றிய சிந்தனை வருவதற்கு 19-ஆம் நூற்றாண்டு வரை காத்திருக்க வேண்டியிருந்தது, எண்ணியல் கோட்பாடு, வடிவியல், பின்னங்கள் மற்றும் சேர்வு ஆகியவற்றை கண்டுபிடித்ததில் சமணர்களின் பங்கு மிக முக்கியமானது.
மேலும் முடிவிலியை கண்டறிந்தது மட்டு மின்றி, முடிவிலியை ஐந்து வெவ்வேறு வகைகளாக பிரித்துள்ளனர். ஒரு திசை முடிவிலி, இருதிசை முடிவிலி, ஒரு பரப்பில் முடிவிலி, எல்லாதிசையிலும் முடிவிலி, நிலையான முடிவிலி ஆகியவையே ஐந்து முடிவிலிகள்.
கணிதவியலின் கலை இலக்கிய காலகட்டம் (கி.மு 400 - கி.மு.1200)
வேதகாலத்திற்கு முந்தைய காலக்கட்டம் கணிதவியலின் மிக முக்கியமானதோர் காலக்கட்டம் எனலாம். இக்காலகட்டத்தில் தோன்றிய ஆரிய பட்டர், பிரம்ம குப்தர், பாஸ்கரா, வராகமித்திரர், மகாவீரா போன்றவர்கள் கணிதவியல் பல்வேறு கிளைகளாக பிரிவதற்கு தெளிவான அமைப்பை உருவாக்கியவர்கள் எனலாம். வேதகால கணித வியலைப் போன்று அல்லாமல் கணித அறிவியல், ஜோதிட கணிதம், வானியல் கணிதம் என மூன்று பிரிவுகளாக பிரிவுற்று வளர்ந்தன. இக்கால கட்டத்தில்தான் கிரேக்கர்களிடமிருந்து ஜோதிடம் இந்தியாவில் நுழைந்ததாகவும், வானவியல் அறிவு நம்மிடமிருந்து கிரேக்கர்களுக்கு சென்றதெனவும் விவேகானந்தர் எடுத்துரைக்கிறார். கி.மு.120-க்கும் பிந்தைய காலகட்டத்தில் யவனேஸ்வராவினால் எழுதப் பட்ட புகழ்மிக்க ஜோதிட நூல் இதனை மறைமுகமாக உணர்த்துகிறது.
கணிதவியலின் சூனியம் (அல்லது) சூழி மனித சமுதாயத்திற்கே பழங்கால இந்தியா அளித்த பரிசு. இடமதிப்புத் திட்டத்தின் பயன்பாட்டிற்கு சுழி என்ற கருத்தே முழு முதற்காரணம். எல்லா எண் களையும் பத்தே குறியீடுகளைக்கொண்டு குறிப்பிடமுடியும் என்ற கருத்து இடமதிப்புத் திட்டம் ஆகும். இன்றைய கணினி முறைகளில் இன்றியமையாத அடித்தளமாக இருக்கும் எண்முறை (Binary) திட்டம் ஏற்பட அடிப்படை இடமதிப்புத் திட்டம் தான் இது.
இக்காலகட்டத்தில் தோன்றிய ஆரியபட்டர் வானவியலில் மிகுந்த ஆர்வமுடையவர். தன்னுடைய "ஆரியபட்டியம்' எனும் நூலில் நேரியல் சமன்பாடுகளுக்கு (Lixar equations) தீர்வுகாண தன்னுடைய கண்டுபிடிப்பான, குட்டகா என்னும் முறையை விவரித்துள்ளார். அதோடு அல்லாமல் ஆரியபட்டா சைன் பட்டியல் எனும் கோண அளவுகளின் சைன் மதிப்புகளை நான்கு தசம இடமதிப்பிற்கு சரியாக, 0 டிகிரி முதல் 90 டிகிரி வரையிலான கோணங்களுக்கு மதிப்பைக் கண்டறிந்தவர் இவரே. இவருடைய நேரியல் சமன்பாடு ax+by+c ஆகும். இதில் a,b,c என்பன முழு எண்கள்.
பிரம்மகுப்தர் முற்றொருமைகளை கண்டுபிடித்தவர். இயற்கணிதத்தில் முற்றொருமை என்பது இரண்டு வர்க்கங்களின் கூட்டுத் தொகைகள் இரண்டின் பெருக்குதொகையும் இரண்டு வர்க்கங்களின் கூட்டுத்தொகையாக இருக்கும் என்பதுதான்.
இது பிரம்ம குப்தரால் "பிரம்மஸ் புடசித்தாந்தம் என்ற நூலில் எழுதப்பட்டது. சிக்கலெண்களின் தொடர்பு, வட்ட நாற்கரத்தின் பரப்பு காணும் சூத்திரம்,
ஆகியவை பிரம்மகுப்தர் கணிதவியலுக்கு அளித்த மிகப்பெரிய பங்களிப்பு எனலாம். இக்காலகட்டத்தில் வானவியல் கணக்கீடுகள் வேகமாக வளர்ச்சியடைய தொடங்கியிருந்ததை, வானில் நடைபெறும் நிகழ்வுகளான சூரியகிரகணம் மற்றும் சந்திர கிரகணம் ஆகியவற்றின் தோற்றங் கள் குறித்த கணக்கிட ஸ்ரீபதி மிஸ்வராவால் எழுதப்பட்ட "திகோடி தகர்னா' எனும் நூலில் காணலாம். இக்காலகட்டங்களில் மகாவீரா எதிர்மாறு எண்களில் வர்க்கமூலம் இல்லை எனவும், உயர்ந்த அடுக்குள்ள பல்லுறுப்புகளையும் கொண்ட கணக்குகளுக்கு தீர்வுகளை கண்டறிந்தார்.
அனுபவமொழிகள், பொன்மொழிகள் அடங்கிய நூற்றுக்கணக்கான காலை வணக்கம் படங்களைப் பெற:
https://picsart.com/u/sivastar
https://picsart.com/u/sivastar/stickers
ஈகரை டெலிகிராம் ஆப்பில் இணைய: https://t.me/eegarai
மத்தியக் கால கட்டம்
மத்தியக் காலகட்டத்தில் பல கணிதவியலர்கள் இந்தியாவில் தங்களின் கணிதக் கண்டுபிடிப்புகளை வெளியிட்டுள்ளனர். நாராயண பண்டிட், மாதவன், பரமேஸ்வரா, நீலகண்ட சோமையாஜி, ஜேஸ்ட தேவன், சங்கரவாரியர், அச்சுதபிஷரடி போன்றவர்கள் முக்கியமானவர்கள். பதினான்காம் நூற்றாண்டின் இறுதியில், இன்றைய கேரளாவில் பாரதபுழையின் கரையோரம் திருக்கன்டியூர், திருநாவாய திருப்பரங்கோடு மற்றும் ஆலத்தியூர் ஆகிய கிராமங்களை உள்ளடக்கிய பகுதியில் "நீள'' பள்ளி என்றழைக்கப்பட்ட குருகுலப்பள்ளி இயங்கி வந்தது. சாமுத்ரி அரசர்களின் பாதுகாப்பிலும், ஆதரவிலும் ஜோதிடவியலர்கள் மற்றும் கணிதவியலர்கள் வாழ்ந்து வந்தனர். இவர்களுள் பிரசித்தம் பெற்றவர் சங்கம கிராம மாதவன். பல நூல்கள் இயற்றியிருந்தாலும் இவருடைய "வேணுவாரோகம்' எனும் ஜோதிட சித்தாந்த நூல் மட்டுமே கிடைக்கப்பெற்றுள்ளது. இதில் முப்பத்தியாறு நிமிடங்களுக்கு ஒருமுறை வானில் சந்திரனின் நிலையும், அதன் வேகமும் கணக்கீடு செய்கிற முறை தான் முக்கிய அம்சம். இவருடைய சீடர்களின் ஏடுகளிலிருந்து சங்கம கிராம மாதவனின் காலகட்டம் கி.பி.1350-க்கும் - 1925-க்கும் இடைப்பட்டதாக இருந்தது என்பதனை அறியமுடிகிறது.
முடிவுறாத் தொடரை கண்டுபிடித்த சங்கம கிராம மாதவனின் காலகட்டத்திற்கு பிறகு, இரு நூறு ஆண்டுகள் கழித்து மேற்கத்திய கணித அறிஞர்களான ஜேம்ஸ் கிரிகோரி (1638 - 1675) லிபினிட்ஸ் (1646 - 1716) ஐசக் நியூட்டன் (1642 - 1772) அதே முடிவுறாத் தொடரைக் கண்டுபிடித்த னர் என்ற உண்மை நினைவில் கொள்ள வேண்டிய ஒன்று. பிறகு மாதவனின் கண்டு பிடிப்பை ஏற்று, மேற்கத்திய கணிதவியலர்கள் கிளியோரி-மாதவா தொடர், லிபினிட்ஸ் - மாதவா தொடர் என்றழைக்களாயினர்.
முடிவிலாமல் நீளும் முடிவுறாத் தொடர் ஒரு முடிவுறு எண்ணை கொடுக்கக் கூடியது என்ற கண்டுபிடிப்பு அன்றைக்கு ஆயிரம் வருடம் பழமையான ஸீனோ (கி.பி.500) எனும் தத்துவஞானியின் சித்தாந்தத்தை உறுதிப்படுத்து வதாக இருந்தது. ஸீனோவின் தத்துவப்படி இயக்கம், சலனங்கள், மாற்றங்கள் என்பவை உண்மையல்ல. உண்மை எதுவென்றால் மாற்றமில்லா, தன்மையுடைய நிலையான பிரபஞ்சம்தான். ஸீனோவினுடைய ஆமை, முயல் கதையில் ஒளிந்துள்ள கணிதத்தை விளக்குவதற்கு பல நூற்றாண்டுகள் காத்திருக்க வேண்டிவந்தது. ஒரு ஆமையும், முயலும் தமக்குள் ஒட்டப்பந்தயம் வைத்தது. தன்னுடைய தொடக்கப் புள்ளி முயலுடையதைவிட 50 மீட்டர் முன்னில் இருக்க வேண்டுமென்ற ஆமையின் நிர்பந்தத்தை முயல் ஏற்றுக்கொண்டது. புத்திசாலியான ஆமை, ஒட்டப்பந்தயத்தில் முயல் வெற்றிபெறப்போவ தில்லை என்று கூறியது. அதற்கான காரணத்தை இவ்வாறு விளக்கியது: "தனக்கு முன்னே செல்ல வேண்டுமானால் முயல் முதலில் 50 மீட்டர் தூரத்தை கடக்க வேண்டும், அந்த 50 மீட்டருக்கு முன்பு 25 மீட்டர் தூரத்தை கடக்க வேண்டும். அதற்கு முன் 12 1/2 மீட்டர், 6 1/2 ... இவ்வாறான விதத்தில் கடந்தாக வேண்டும், எனக்கூறியது. அதாவது முயல், ஆமைக்கு முன் செல்ல வேண்டு மானால் 50/2 + 50/4 + 50/8 + 50/16 + 50/32 ... என்ற முடிவிலா தொடர் குறிப்பிடும் தூரத்தை கடந்தாக வேண்டும். இந்த தூரம் முடிவிலாதது. ஆகையினால் முயல் வெற்றிபெற முடியாது என்ற இக்கதைக்கு விடையைக் கூற பல தலைமுறைகள் எடுத்தது. இவ்வகையில் முடிவிலாதொடர் கண்டுபிடித்ததில் சங்கம கிராம மாதவன் மேலைநாட்டவர்களின் கண்டு பிடிப்புகளுக்கு இருநூறு வருட முன்னோடி. இவரின் சீடர்களின் வரிசையில் வந்த ஜேஸ்ட தேவன் எழுதிய "யுக்தி பாஷா' நூலின் வாயிலாக நுண்கணிதம் (Calculas) முதன்முதலாக இந்தியாவில் வெளிவந்தது. ஒரு எண்ணின் தொகையீடு என்பது அவ்வெண்ணின் வர்க்கத்தின் பகுதி, அதாவது x2/2 என்று யுக்தி பாஷா நுண்கணிதத்தின் தீர்வுகளை எடுத்து வைக்கிறது.
முக்கோண சைன் (Sin), கொசைன் (Cosain) கண்டுபிடிப்பு மட்டுமே போதுமானது உலக கணிதவியலர்கள் மத்தியில் சங்கம கிராம மாதவனின் புகழ் பிரகாசிக்க. சங்கம கிராம மாதவனின் முக்கோணவியல் தொடர் பின்வருமாறு எழுதலாம்.
இவ்வாறு - π (பை)ன் மதிப்பு தசம இடமதிப்பு மிகச்சரியாக 3.14159265359 எனக் கண்டறிந்தார். இதன் பின்னர் முகலாயப் பேரரசு ஆட்சிக் காலத்தில் இந்தியாவில் குறிப்பிடத்தக்க வகையில் கணிதத்தில் முன்னேற்றம் இருந்ததற்கான சான்றுகள் கிடைக்கப்பெறவில்லை.
ஆங்கில ஆட்சியில் கணிதவியலின் வளர்ச்சி:
கல்வி வளர்ச்சி ஆங்கில ஆட்சி சுமூகமாக நடைபெற உதவும் நோக்கிலேயே இருந்தது. 1857-இல் கல்கத்தா பம்பாய் மற்றும் சென்னை ஆகிய இடங்களில் பல்கலைகழகங்கள் தொடங்கப் பட்டன. இது முக்கியமாக, ஆங்கில அதிகாரத்தின் கீழ் நிர்வாகிகளாக பணிபுரியவும், அவர்களின் பல்வேறு அரசு துறைகளில் பணியாற்றவும் இந்தியர்களுக்கு பயிற்சி அளிப்பதையே முக்கிய நோக்கமாகக் கொண்டிருந்தது. ஆங்கிலேயர்கள் தனித்துவமான சிந்தனைகள் இந்தியர்களுக்கு தேவையற்ற ஆடம்பரம் என்று கருதி பல சமயங்களிலும் அவர்களை பின்னோக்கி செலுத்துகிற மனப்பாங்கையே கொண்டிருந்தனர். ஆங்கிலேயருக்கு தேவை நன்கு பயின்று தேர்ந்த வேலைக்காரர்களேயின்றி சிந்தனையாளர்கள் அல்ல.
சில சமூகத்தை சேர்ந்தவர்கள் ஆங்கிலேயர் களின் அடிமைகளாக, அவர்கள் கூறும் எதையும் செய்பவர்களாக இருந்தனர். அத்தகையோருக்கு அக்காலகட்டத்தில் கல்வி, வேலை போன்ற அ ரசு அலுவலகங்களில் முன்னுரிமை இருந்தது. ஏனைய மக்கள் சுதந்திர வேட்கையில் போராட்டக் களத்தில் இருந்தனர்.
பத்தொன்பதாம் நூற்றாண்டின் தொடக்க காலகட்டத்தில்தான் இரு மிகச்சிறந்த பல்கலைக் கழகங்கள் தோன்றின. அவை இந்தியாவில் கணிதவியல் அறிவை ஊக்குவித்தது.
இந்திய கணிதவியல் சங்கம் :
1906-ஆம் ஆண்டு டிசம்பர் 25-ஆம் தேதி வி.ராமசாமி அய்யர், "எடின்பர்க் கணிதவியல் சொசைட்டி, போன்றதோர் கணிதவியலுக்கான பிரத்யேக அமைப்பை இந்தியாவில் நிறுவ எண்ணி, "அனலடிகல் கிளப்' என்ற பெயரில் கணிதவியலில் ஆர்வமுடைய சிறு நண்பர்கள் குழுவை ஒற்றிணைத்தார். கணிதவியல் தொடர் பான இதழ்கள், புதிய கணித நூல்கள் போன்றவற்றை வருவித்து தங்களுக்குள்ளே பரிமாறிக் கொள்ள முடிவெடுக்கப்பட்டது. இந்த நிகழ்வு தான் 1907-ஆம் ஆண்டு கணிதவியல் சொசைட்டி யாக மாறியது. பம்பாய் மற்றும் சென்னை பல்கலைக்கழகங்களில் பணியாற்றிய எம்.ஏ மற்றும் பி.ஏ பட்டம் பெற்ற தேர்ந்த ஆசிரியர்களை கண்டறிந்து அவர்களை உறுப்பினர்களாக்கி னார். முதலில் பல்வேறு கணித ஏடுகளை சேகரித்து ஒரு நூலகத்தை ஏற்படுத்தி, மாதம் இருமுறை குழுவின் நிலை பற்றிய சுற்றறிக்கை தயாரித்து, அதன் உறுப்பினர்களுக்கு தெரியப் படுத்தப்பட்டது. மிக விரைவிலேயே 1905 முதல் தொடர்ந்து நாராயணன் அய்யங்காரின் கணித கட்டுரைகளும், கேள்வி பதில் விளக்கங்களும் அவ்வேடு தாங்கி வெளிவந்தது. அதில் வெளிவந்த முதல் கட்டுரைகள் ஆர்.பரண்ஞ்யை எழுதிய "ஆன் த' மற்றும் நாராயண ஐயங்கார் எழுதிய "த நைன் பாய்ண்ட் சர்க்கிள்' ஆகும்.
ஆரம்பத்தில் புனேயிலுள்ள பெர்சென் கல்லூரியை தலைமையிடமாகக் கொண்டு இயங்கியது. அதன் முதல்வர் பரண்ஞ்யை கௌரவ உறுப்பினராகவும், நூலகராகவும் செயல்பட்டார். அன்றைய பம்பாய் இந்தியக் கணிதவியல் சங்கத்தின் தலைமையிடமாக கூறப் பட்டாலும் உண்மையில் இந்தியாவின் தபால் மையமாக செயல்பட்ட புனேதான் அதன் மையம், அக்காலத்தில் தபால் மூலமாகவே அனைத்து நூல்களும், இதழ்களும் அனுப்பி வைக்க முடிந்தது என்பதே இதன் முக்கிய காரணம்.
கல்கத்தா கணிதவியல் சங்கம் (அ) கழகம்
ஒரே காலகட்டத்தில் இந்தியாவின் இரு வேறு பகுதிகளில், கிழக்கிலும் (கல்கத்தா) மேற்கிலும் (பம்பாய்) கணிதவியல் சங்கங்கள் தொடங்கப் பட்டது. கல்கத்தா கணிதவியல் சங்கத்தின் தலைவராக நீதியரசர் அசுதோஷ் முகர்ஜி செயல் பட்டார். சினேகலதா மைத்ரா இதன் முதல் பெண் உறுப்பினர். சங்கத்தின் கூட்டம் மாதம் ஒருமுறை நடத்தப்பட்டு, கூட்டத்தில் குறைந்தது ஒன்று அல்லது இரண்டு கட்டுரைகள் சமர்ப்பிக்கப் பட்டன. இது "புல்லட்டின் ஆப் கல்கத்தா' மாத இதழை வெளியிட்டது. இந்தியக் கணிதவியல் சங்கத்தினைபோன்றல்லாமல், இது மாத இதழ்களில் ஆராய்ச்சி கட்டுரைகளை கட்டாய மாகக் கொண்டிருந்தது. கூட்டங்களுக்கான அறிவிப்புகளை கொண்டிருக்க வில்லை. மாறாக கணித ஆராய்ச்சி கட்டுரைகளும், புதிய கணித நூல்களை பற்றிய விமர்சனங்களும் இடம் பெற்றிருந்தன.
1923-ஆம் ஆண்டு இச்சங்கத்தின் தலைவராக கேம்பிரிட்ஜ் பல்கலைகழகத்தில் பயின்ற கணேஷ் பிரசாத் பொறுப்பு தலைவரானார். இவர் பனாரஸ் கணிதவியல் சங்கம் என்றும் சங்கத்தை பனாரஸ் பல்கலைக்கழகத்தில் பணியாற்றிய போது நிறுவி னார், இவரின் பொடென்சியல் தேற்றம், வகைபாட்டு வடிவியல், நிலையான வளைவு பரப்புகள் ஆகியவற்றை பற்றிய ஆராய்ச்சிக் கட்டுரைகள் ஆங்கிலேய முறையை தழுவியிருந்தது.
ஏறக்குறைய இதே காலகட்டத்தில், தமிழ்நாட்டின் கும்பகோணத்தில் பிறந்த கணித மேதை சீனிவாச ராமானுஜம், 1910-இல் தன்னுடைய ஆசிரியரான கே.எஸ்.பத்ராச் சாரியாரால் சி.ராமசாமி அய்யருக்கு அறிமுகம் செய்து வைக்கப்பட்டார்.
ராமானுஜம் தனக்கு தோன்றும் கணக்குகளின் தீர்வுகளை தன்னுடைய நோட்டு புத்தகத்தில் குறித்துவைப்பது வழக்கம். அவ்வாறு குறித்து வைத்த கணக்குகளின் தீர்வுகளை ராமசாமி அய்யரிடம் காண்பித்தபோது, கணித தீர்வுகளுக்கு விரிவான விளக்கங்கள் இல்லாவிட்டாலும் அதன் முடிவுகள் மிகச்சரியாக இருப்பதை உணர்ந்து, செல்வந்தரும் கணிதவியலருமான திவான் பகதூர் ஆர்.ராமசந்திர ராவிடம் அனுப்பி வைத்தார். ராமானுஜம் அப்போதே நீள்வட்டத் தொகையீடு, உயர்பெருக்கத் தொடர் மற்றும் உலகம் அதுவரை அறிந்திராத விரிதொடர் போன்றவற்றின் தீர்வுகளை கண்டுபிடித்திருந்தார். ராமானுஜரின் பெர்னாலிஸ் எண்களின் சில பண்புகள் எனும் கட்டுரை இந்திய கணிதவியல் சங்கத்தின் இதழில் வெளியானது. மேற்படிப்புக்காக இங்கிலாந்து சென்ற ராமானுஜம் டிரினிடாட் பல்கலைகழகத்தில் தனது 21 ஆராய்ச்சி கட்டுரைகளை சமர்பித்தார்.
முடிவுறா தொடர் கணக்கீடு குறிப்பாக அஸிம்டோடிக் மற்றும் விரிதொடர் இவற்றை ஈலர்-மெக்லரின் தொடர்க்கூட்டு சூத்திரத்தின் உதவியினால் கண்டுபிடித்த தேற்றம் ஆகியவற்றில் சிறந்து விளங்கினார்.
கடவுள் நம்பிக்கை மிகுந்த ராமானுஜம், கடவுள் என் முன்னால் தோன்றி தன் நாவில் சமன்பாடுகளை எழுதுவதாக கூறினார். இதை ஆதரித்தவர்களும் உண்டு. மூடநம்பிக்கையும் விஞ்ஞானமும் அக்காலத்தில் பிணைந்திருந்ததை இந்நிகழ்ச்சி காட்டுகிறது.
கல்கத்தா கணிதவியல் சங்கம் பயன்பாட்டு கணிதத்தை ஆதரிப்பாக இருந்தது. சென்னையின் கணித தீர்வுகள் உண்மைத்தன்மையின் அமைந்த கணிதவியலை ஆதரித்தது.
இறுதியாக
நம்நாட்டில் உள்ள கண்டுபிடிப்புகளில் பெரும்பகுதி பண்டைய இந்தியாவில் கண்டு பிடிக்கப்பட்ட, மற்றும் எழுதப்பட்டவைகளே யாகும். சுதந்திரத்திற்கு பின் இந்தியாவில் ஆராய்ச்சிகள் அதிக எண்ணிக்கையில் நடை பெற்றுவந்த போதிலும் வெற்றிகள் என்பது எட்டாகனியாகவே இருந்து வருகிறது. இந்தியா ஆங்கில ஆதிக்கத்தின் கீழ் வந்த பிறகு நாம் நம்முடைய தனித்துவ கண்டுபிடிப்புகளை மறந்து மேற்கத்திய நாடுகளின் கணிதவியலை பின்பற்றத் தொடங்கிவிட்டோம். இது நம்மிடைய கணிதவியல் அறிவு மங்கலடைவதற்கு காரண மாயிற்று. மேலும் நம்முடைய பண்டைய காலத்தில் இருந்து வந்த குருகுல கல்விமுறை குறிப்பிட்ட சமூகத்தினருக்கு மட்டும் பயன்படும் வகையில் சுயநல நோக்கம் கொண்டு செயல்பட்டதால் பண்டய கணிதவியலர்களின் கண்டுபிடிப்பு ஓலைச் சுவடிகளிலேயே தங்கி விட்டது. அங்கும் பரவ வாய்ப்பின்றி போனது. நாம் அறிந்த அறிவினை பிறருக்கு எடுத்துக் கூறும் எண்ணம் பண்டைய சமூகத்தில் இருந்த தாக தெரியவில்லை. சமண மதத்தினரை தவிர இப்போது நம் நாட்டில் குறிப்பிடத்தகுந்த கணிதவியல் முன்னேற்றங்கள் இல்லை. உலக மயமாக்குலுக்குப் பின்னர் எல்லா நாடுகளும், நிறுவனங்களும் வியாபார நோக்கம் கொண்ட ஆராய்ச்சிகளிலேயே கவனம் செலுத்து கின்றன. கணிதவியல் போன்ற துறைகளில் ஆராய்ச்சிகளை ஊக்குவிக்கும் எண்ணம் பெயரளவில் மட்டுமே. கணிதவியல் ஆராய்ச்சி களினால் என்ன லாபம் கிடைக்கப்போகிறது என்ற கேள்விதான் இன்று உலகில் எஞ்சி நிற்கிறது. இது மாறவேண்டும் கணிதவியல் ஆராய்ச்சிகளை ஊக்குவிக்க படவேண்டும்.
- எஸ் விஸ்வநாதன்
அனுபவமொழிகள், பொன்மொழிகள் அடங்கிய நூற்றுக்கணக்கான காலை வணக்கம் படங்களைப் பெற:
https://picsart.com/u/sivastar
https://picsart.com/u/sivastar/stickers
ஈகரை டெலிகிராம் ஆப்பில் இணைய: https://t.me/eegarai
- Sponsored content
Similar topics
மறுமொழி எழுத நீங்கள் உறுப்பினராக இருக்க வேண்டும்..
ஈகரையில் புதிய பதிவு எழுத அல்லது மறுமொழியிட உறுப்பினராக இணைந்திருத்தல் அவசியம்
Page 1 of 1